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Abstract

Web-scale training on paired text-image data is
becoming increasingly central to multimodal
learning, but is challenged by the highly noisy
nature of datasets in the wild. Standard data
filtering approaches succeed in removing mis-
matched text-image pairs, but permit semanti-
cally related but highly abstract or subjective
text. These approaches lack the fine-grained
ability to isolate the most concrete samples
that provide the strongest signal for learning in
a noisy dataset. In this work, we propose a new
metric, Image Caption Concreteness (ICC),
that evaluates caption text without an image
reference to measure its concreteness and rele-
vancy for use in multimodal learning. Our un-
supervised approach leverages strong founda-
tion models for measuring visual-semantic in-
formation loss in multimodal representations.
We demonstrate that this strongly correlates
with human evaluation of concreteness in both
single-word and caption-level texts. Moreover,
we show that curation using ICC complements
existing approaches: It succeeds in selecting
the highest quality samples from multimodal
web-scale datasets to allow for efficient train-
ing in resource-constrained settings.

1 Introduction

Pre-training large vision-language models (VLMs)
on web-crawled datasets consisting of image-
caption pairs has become the standard practice
in achieving state-of-the-art results in vision-and-
language tasks such as image captioning and multi-
modal representation learning. However, raw web
data are often noisy and contain many low-quality
samples, which impair VLMs’ learning in terms of
quality and efficiency (Li et al., 2022; Schuhmann
et al., 2022; Radenovic et al., 2023). While various
factors impact data quality, we focus on semantic
noise, characterized by analyzing the meaning of
data items rather than, e.g., identifying low resolu-
tion images or quantifying token repetitions.

↑
A sandwich sits
on a small blue
plate (0.96)

Curly-haired man
with a mustache
in a vintage photo
(1.0)

A cat standing on
a counter looking
at a coffee cup
(1.0)

↓
It does not look
like something I
would eat (0.02)

Talk about a bad
hair day, his is
frightful (0.01)

I cant see this im-
age it is too dark
(0.02)

Figure 1: Given an image caption, ICC measures
its visual concreteness. We show samples from MS-
COCO (Lin et al., 2014) illustrating captions annotated
by different annotators with low (↓) and high (↑) ICC
scores. As seen above, our method successfully dif-
ferentiates between concrete and abstract or subjective
captions, even for high-quality datasets such as MS-
COCO. This is done by quantifying visual-semantic
consistency using multimodal foundation models.

Existing datasets are commonly filtered using
VLMs such as CLIP (Radford et al., 2021) to iden-
tify image-text semantic misalignments (Sharma
et al., 2018; Schuhmann et al., 2022), i.e. captions
irrelevant to their images; using rule-based proxies
such as measuring the complexity of captions via
semantic parsing (Radenovic et al., 2023); or re-
moving images that contain text that overlaps with
the caption (Maini et al., 2023). However, these
approaches fail to identify captions that are highly
abstract and may contain subjective, non-visual in-
formation, despite being semantically aligned with
the image and having a sufficiently complex gram-
mar. Figure 1 shows examples of such image-
caption pairs. A caption such as “It does not look
like something I would want to eat” is semanti-
cally related to the image, yielding high CLIP sim-
ilarity, but contains subjective details which pro-
vide a confounding signal when training VLMs
(See also Figure 2). A model trained to gener-
ate such captions from images may learn to hal-
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lucinate details, e.g., liking a certain type of food
in our example, which are not visually grounded
and are highly subjective. Similarly, such image-
caption pairs provide a weaker signal for represen-
tation learning than images with visually concrete
captions (e.g. “A sandwich sits on a small blue
plate”), which may impede the learning process –
particularly in a resource-restricted setting where
data or compute is limited.

Thus, we suggest filtering image captions by
their visual concreteness, referring to the extent to
which a text describes visual aspects of a scene in
a manner that can be vividly imagined (Schwanen-
flugel, 2013; Hessel et al., 2018)1. This contrasts
with abstract text, which may correspond to many
possible visual interpretations or include subjec-
tive information. We show that this new dimen-
sion of textual quality enables selecting image-
caption pairs that provide a strong supervision
signal for vision-and-language tasks, particularly
in resource-constrained settings where training di-
rectly on noisy web-scale multimodal data fails
to converge to a satisfactory solution in a limited
number of iterations.

We propose the Image Caption Concreteness
(ICC) metric for quantifying the visual concrete-
ness of image captions calculated from text alone,
i.e., without an image reference. We measure
concreteness using unsupervised autoencoding
pipelines with visual-semantic information bottle-
necks. Specifically, we use a visual-bottleneck au-
toencoder that leverages text-to-image generative
models’ competence and a semantic-bottleneck au-
toencoder that identifies how well a large language
model (LLM) recovers the input caption from its
semantic CLIP embedding. As these models re-
quire costly inference through large generative
models, they cannot feasibly run on a large scale;
therefore, our ICC metric is distilled from these
pipelines, enabling fast, computationally-efficient
inference.

In our experiments, we demonstrate that when
dealing with limited training iterations, employing
ICC for filtering multimodal datasets leads to en-
hanced performance in image captioning and rep-
resentation learning. Moreover, our results indi-
cate a strong correlation between ICC and both

1Some works have treated this as roughly synonymous
with imageability (visual association), while others use con-
creteness to refer more generally to association with sen-
sory experiences of all types (Richardson, 1975; Khanna and
Cortese, 2021). Our work focuses on the visual modality.

(a) poaching still remains
the biggest threat to tigers

(b) Wheat bread is al-
ways the healthy choice for
lunchtime

(c) want a ring like this!

(d) Someone did not ob-
serve the stop sign and now
it is knocked over

Figure 2: Examples with high CLIP similarity and
low ICC. We show examples from Conceptual Cap-
tions dataset (a) and (c), and COCO dataset, (b) and (d).
While these captions are semantically related to the im-
ages, they are abstract or contain subjective non-visual
information that, unlike ICC, CLIP fails to detect.

single-word concreteness and caption text scores.
Stated explicitly, our contributions are as fol-

lows: (1) We propose the ICC metric distilled
from foundation VLM models with a novel com-
bination of unsupervised autoencoding pipelines;
(2) we show that ICC highly correlates to human
concreteness judgements of caption texts; (3) we
demonstrate that ICC succeeds in selecting a core
of samples from web-scale image-caption datasets
for vision-and-language tasks, with superior down-
stream performance to existing filtering methods.

2 Method

Given an image caption (of an unseen image), we
aim to predict its degree of visual concreteness.
Our underlying assumption is that more visually
concrete text can be mapped to a visual represen-
tation with less information loss. Conversely, we
expect that visually abstract or subjective text can-
not be converted to or from a visual representation
without significant information loss, since it does
not clearly describe a well-defined image.

As an example, consider the text “Wheat bread
is always the healthy choice for lunchtime” in Fig-
ure 2b. The notion of wheat bread being a healthy
choice is inherently non-visual and is unlikely to
be directly depicted in an image. Therefore, this
information is likely to be lost in an autoencoding
process that includes an image as the bottleneck,
when the encoded image is decoded back to the
textual modality.



Figure 3: ICC pipeline for predicting visual concreteness of image captions. We first acquire training data using
a semantic-bottleneck autoencoder (SBA, top left) and an visual-bottleneck autoencoder (VBA, bottom left). We
then distill a weighted combination of their reconstruction scores into a smaller language model (LM, right), which
learns to produce ICC scores for new text. We visualize reconstruction scores for highly concrete (“A black dog”)
and highly abstract (“A nice location”) text. High and low scores are colored in green and red, respectively. Our
final score, which combines the two pipelines, yields more accurate concreteness predictions than each of them.

We model this effect with multimodal autoen-
coders (Kamath et al., 2023; Yang et al., 2023). In
our setting, we use multiple autoencoder compo-
nents that convert text to and from visual-semantic
representations using foundation VLMs, and quan-
tify the information loss of this process as a proxy
for visual concreteness. While these autoencoders
provide a strong signal, they are composed of
slow, computationally-intensive large generative
models making inference infeasible on a large
scale. Therefore, we distill their scores into a
small model which allows for an efficient calcu-
lation of the ICC scores.

We proceed to describe our proposed visual-
bottleneck autoencoder and semantic-bottleneck
autoencoder components, and their distillation
into the final ICC metric. See Figure 3 for an
overview of our full pipeline.

Visual-Bottleneck Autoencoder (VBA). Since a
caption represents an image, we construct the
VBA by using an image as an intermediate repre-
sentation via which textual information passes. In
particular, we concatenate a frozen text-to-image
model (Stable Diffusion 2, Ramesh et al.,
2022) and a frozen captioning model (BLIP-2,
Li et al., 2023) as shown in Figure 3 (bottom
left). This autoencoding pipeline measures text
concreteness by encoding and decoding a cap-
tion, followed by measuring semantic fidelity in re-
construction using BERTScore (F1) (Zhang et al.,

2019). We note that this pipeline contains no
trained parameters as it concatenates pretrained,
frozen models.

While the VBA pipeline is a simple and intuitive
way of enforcing a visual bottleneck, it may some-
times produce sub-optimal reconstructions even
for highly visual texts due to its inherently lossy
nature. For example, the caption “a small black
french bulldog” in Figure 3 may be reconstructed
by the VBA from the generated image to “a dog
with a white chest", which is relatively semanti-
cally far from the original caption and thus results
in a relatively low reconstruction score of 0.6 for
a concrete caption. This stems from the dense
information content of generated images, which
may contain details (such as the dog’s white chest)
which were not mentioned explicitly in the origi-
nal caption, and from the tendency of the caption-
ing decoder to focus on different details than those
used to generate the image. To alleviate this issue,
we proceed to propose a complementary method
using a stronger prior on caption semantics.

Semantic-bottleneck Autoencoder (SBA). Moti-
vated by findings that CLIP embeddings encode vi-
sual information in text and particularly concrete-
ness (Alper et al., 2023), we construct an autoen-
coding pipeline with CLIP text embeddings as a se-
mantic information bottleneck, as shown in Figure
3 (top left). We extract visual information from the
CLIP text embedding space by utilizing a frozen



LLM (Llama-2-7b, Touvron et al., 2023), by train-
ing a linear layer that converts CLIP text encoder’s
output to inputs for the LLM. The training objec-
tive aims at reconstructing the input captions via
a token-wise cross-entropy objective. By keeping
the encoder backbone (CLIP) frozen, this intro-
duces an information bottleneck preventing faith-
ful reconstruction of abstract texts.

After training the SBA over image–caption
pairs, we use it for measuring text concreteness by
encoding and decoding the text followed by mea-
suring reconstruction fidelity. To measure preser-
vation of fine-grained textual details, we quantify
this fidelity via per-character edit distance (Leven-
shtein et al., 1966), standardized by caption length,
as detailed in Appendix A.1.

This pipeline generally succeeds in reconstruct-
ing highly concrete text (such as “A small black
french bulldog” shown in the top left part of Figure
3). However, the strong textual prior of the SBA
may also leak information about abstract and sub-
jective captions as well (e.g. the abstract caption
“A nice location” yields a relatively high recon-
struction score of 0.4), limiting its correlation with
visual concreteness. Overall, the SBA and VBA
provide complementary scores, where each corre-
lates more strongly to visual concreteness in differ-
ent cases. Therefore, they perform most strongly
when combined together, as we explicitly verify in
our ablations in Section 4. We also show qualita-
tive examples in figures 8 and 9 in the appendix.

ICC Distillation. Using the aforementioned
pipelines to quantify the concreteness at scale is
not feasible, as this requires running large mod-
els (e.g., diffusion models, LLMs) with billions of
parameters for many forward passes per instance
(up to dozens of forward passes for the diffusion
models inference and for the LLM and captioning
model decoding). This requires more than 1,000
GPU hours for a dataset of 1M samples. Therefore,
we assemble SBA and VBA reconstruction scores
over a relatively small collection of image-caption
pairs and distill their aggregated values into our
final ICC score. This enables efficient inference
that can easily run on a large scale, with over a
hundred times faster inference time and much less
compute required. Specifically, we train a small
text encoder model (Liumm et al., 2019) to predict
a logit-linear combination of the SBA and VBA
scores, computed as described in the appendix.

Implementation Details of ICC Construction.
For the construction of our ICC score, we use a
subset of CC3M (Sharma et al., 2018) composed
of 595K image-caption pairs, introduced by Liu
et al. (2023) and designed to have wider concept
coverage. We take a subset of 476K samples for
training the linear layer of the SBA, and train for
2 epochs with a batch size of 128 and learning
rate of 2e-3 with cosine scheduling function. The
remaining 118K samples are used for generating
reconstruction scores through the VBA and the
trained SBA. For each input caption, we generate
five reconstructed captions using beam search (five
beams) with the VBA’s captioner and the SBA’s
LLM and then choose the reconstructed caption
with the highest similarity to the source caption.
By generating the reconstructions and measuring
the reconstruction fidelities, we obtain a dataset
of 118K captions and corresponding reconstruc-
tion scores. We standardize by caption length to
disentangle the dependency of the reconstruction
scores to the caption length (i.e., forcing the same
distribution of scores for all caption lengths), as
described in the appendix. We train a small lan-
guage model (DistillRoberta-Base) to predict
the combined scores on these samples with a Mean
Squared Error objective. This final distilled model
is used for generating the ICC scores.

3 Results

We turn to show ICC’s benefit in data curation for
downstream tasks (Section 3.1), followed by its
correlation to human judgement (Section 3.2).

3.1 VLM Dataset Curation

Experimental Settings. We investigate the effect
of ICC and other filtering methods for curating
a core of high-quality image-caption pairs from
large multimodal datasets, comparing their effects
on downstream task performance – both discrim-
inative (representation learning) and generative
(image captioning). We follow similar settings as
described in the Datacomp (Gadre et al., 2023)
benchmark’s filtering track2, with the following
modifications to model the resource-limited set-
ting: given a training dataset comprised of M
samples, the downstream model is constrained to
train for exactly N ≪ M iterations over the fil-
tered subset of the dataset. This contrasts with

2As opposed to the BYOD track which allows for modify-
ing the samples, for instance by using synthetic captions.



the original Datacomp setting where N = M,
which requires significant compute for a web-scale
dataset. Our formulation tests the ability of filter-
ing methods to curate high-quality core subsets of
such datasets. Our initial subset of LAION-400M
is composed of M = 8M samples and we fix
N = 2M training iterations. To verify the ro-
bustness of our method, we measure downstream
performance over visually grounded benchmarks
across three different sizes of filtering.

We compare to four existing filtering methods
– CLIPScore (Hessel et al., 2021), Complexity
and Action (CA) (Radenovic et al., 2023)3, T-
MARS (Maini et al., 2023), and PACScore (Sarto
et al., 2023). CA is a rule-based filtering method
which aims to retain only sufficiently complex
captions that also contain an action, based on
semantic parsing. T-MARS filters multimodal
datasets by removing samples whenever an image
includes text that overlaps significantly with the
caption. PACScore trains a CLIP-based model
with positive-augmented contrastive learning ap-
proach, showing improved correlations with hu-
man intuition in scoring image-caption pairs. As
opposed to these methods, we focus on filtering
according to the concreteness of image captions.

Captioning Models. In Table 1 we show quan-
titative results of applying ICC filtering on top
of standard CLIPScore filtering over the subset
of LAION-400M for training a captioning model.
The captioning model used is an encoder-decoder
architecture with a pretrained Swin (Liu et al.,
2021) vision encoder and GPT-2 (Radford et al.,
2019) text decoder. We use a batch size of 100,
and learning rate of 2e-5 with a cosine scheduler.
We test our approach over two standard caption-
ing benchmarks datasets – MS-COCO (Lin et al.,
2014) and NoCaps (Agrawal et al., 2019), across
multiple captioning metrics (Papineni et al., 2002;
Banerjee and Lavie, 2005; Lin, 2004; Vedantam
et al., 2015; Anderson et al., 2016; Zhang et al.,
2019; Wada et al., 2024). As illustrated in the ta-
ble, filtering with ICC outperforms by a large mar-
gin the alternative filtering methods for captioning
given a fixed number of desired samples and train-
ing iterations. Note that unlike other methods, ICC
is directly aligned with the captioning objective,
as a captioning model should generate visually-
grounded concrete text. This may explain the large

3Using our re-implementation, as there is no publicly
available code.

gap in performance between ICC and other filter-
ing baselines. We show qualitative comparison be-
tween captioning models trained with different fil-
tering methods in Figure 4, exemplifying how fil-
tering with ICC promotes more concrete and accu-
rate captioning.

Image-Text Representation Learning. We also
perform a representation learning experiment by
training a dual text and image encoder model
on LAION-400M filtered with different methods.
Table 2 reports text-to-image retrieval over stan-
dard held-out retrieval benchmarks, namely MS-
COCO (Lin et al., 2014) and Flickr30K (Plum-
mer et al., 2015). The model is initialized from
pretrained vision and text encoders (ViT-base,
BERT-Base) (Dosovitskiy et al., 2010; Devlin
et al., 2018), as suggested by Zhai et al. (2022).
We use a batch size of 128, learning rate of 2e-5
with a cosine scheduling function. All other filter-
ing methods in the table are identical to the ones
in the captioning setting. As illustrated in the ta-
ble, ICC yields superior performance for this task,
showing that our method selects samples which
provide better signals for downstream retrieval ap-
plications in this setting.

We note that although prior work has found fil-
tering methods such as CLIPScore (Hessel et al.,
2021) to be beneficial (Gadre et al., 2023), we
find that it fails to significantly improve (or even
degrades) results in the case of selecting a small
core of samples. This accords with previous work
showing that applying filtering to LAION-400M
with CLIP degrades the performance (Maini et al.,
2023) in some of the benchmarks, likely due to
high-scoring images containing literal text that
overlaps with the caption.

3.2 Concreteness Correlation

Table 3 shows the correlations of different con-
creteness estimation methods to ground-truth con-
creteness scores on both single-word and caption-
level benchmarks. We compare ICC to three base-
lines. The first baseline is zero-shot probing of
CLIP through Stroop probing (SP) as proposed by
Alper et al. (2023). The second baseline is ave-
CLIP (Wu and Smith, 2023), the only (to the best
of our knowledge) learned metric quantifying con-
creteness at the sentence level, which generates
multiple images from a caption and measures the
average CLIP-similarity between the text and gen-
erated images. Due to its high computational cost,



CA
Tiger cubs playing in
the rain at the Zoo of
the Ozarks in
Washington, D.C. on
Saturday, Oct. 18

Coffee at the bar. I
love this place! It’s
a great way to get
away from the hustle
and bustle

Cleveland Indi-
ans vs. Boston
Red Sox

Cambodia, the largest
of all the African sa-
vannahs, is one of the
most arid regions in
the world.

Rugby World Cup
2019: The men’s sin-
gles final takes place
at the Ritz-Carlton in
London, England, on
Saturday,

TMS
Catching a lion in the
wild is one of the
most beautiful things
you can do in the wild.

Coffee at the bar.
Photo credit: Flickr
userfairy.com.au.
(via Flickr)

Buster Posey
hits a two-run
home run...

Aerial view of a wild
boar in a field in
Namibia, South Africa,
Africa. (Photo cour-
tesy of the Namibian
Wildlife)

Astonishingly, there
was no shortage of
competition between
the two-school teams
at the London 2012
Olympic Games.

CLIP
Polar bear cubs
pose for a photo
with a polar bear
in the background.
Credit: NASA/JPL-
Caltech/UCLA

Pizza Hut Creamy
Pizza Sandwich with
Bacon, Cheese, and
Tomato Sauce

Bryce Harper
of the Toronto
Blue Jays signs
autographs for
fans prior to
the game

Aerial view of the
world’s largest
crocodile in the
Serengeti National
Park.

New York Mets Fa-
natics Authentic 8""
x 10"" Skateboard
Deck

ICC
Panda eating bamboo A picture of a pizza

box full of pizzas
black and
white photo
of a baseball
player

Zebra at the zoo A view of the tennis
court from the front.

Figure 4: Qualitative examples of captions generated by captioning models trained on datasets filtered with differ-
ent filtering methods, over images from MS-COCO test split. CA denotes Complexity and Action filtering, and
T-MARS is marked by TMS. As seen above, models trained on ICC-filtered data generate much more concrete
and visually-grounded captions.

we evaluate it on a random subset of each bench-
mark (as described in the appendix). Finally, we
compare to GPT-4o (Achiam et al., 2023), used
in the zero-shot setting by prompting it to provide
concreteness scores. The prompts used and an ad-
ditional comparison to GPT-3.5-Turbo are detailed
in the appendix.

Correlation to Word Concreteness. We first val-
idate our metric by measuring it on the dataset
introduced by Hessel et al. (2018). This con-
sists of 39,954 English unigrams and bigrams cou-
pled with human-labelled concreteness scores on
a scale from 1 (abstract) to 5 (concrete), averaged
over annotators. To compare with prior work, we
only use unigram nouns, totaling 14,562 items. As
seen in Table 3, ICC outperforms prior dedicated
methods for measuring word concreteness, while
performing competitively with the proprietary and

much larger GPT-4o.

Correlation to Caption Concreteness. We manu-
ally annotate concreteness scores for 500 captions
from LAION-400M (Schuhmann et al., 2022), se-
lected to cover a wide variety of levels of concrete-
ness. As seen in Table 3, ICC outperforms ex-
isting methods in this setting by a large margin,
demonstrating its advantage in selecting the most
concrete image captions.

4 Ablations

Distillation Concreteness Effect. Although the
distillation procedure is necessary to make infer-
ence feasible with respect to runtime, we provide
further motivation by measuring the effect of dis-
tillation on the correlation to ground-truth annota-
tions of concreteness scores in Table 4. As can
be seen, the distillation improves correlations val-



MS-COCO NoCaps

Method # Samples B@4 M R C S BSc P B@4 M R C S BSc P

Random 100k 0.9 4.7 11.2 5 2.3 0.64 0.18 1 5.1 11.9 5.6 1.6 0.68 0.11
CLIP 100k 1.1 5.5 11.9 2.5 2.2 0.75 0.12 1.4 5.7 12 3 1.5 0.71 0.08
CA 100k 0.9 3.7 7.3 3.2 1.6 0.27 0.20 1.6 4.4 9.4 4.1 1.2 0.33 0.11
T-MARS 100k 1.2 4.6 10.6 5.6 2.3 0.53 0.20 1.3 4.9 11.6 6.3 1.7 0.61 0.11
PACScore 100k 1.9 6.8 15 5.5 3 0.82 0.16 2.9 7.5 16.1 7.7 2.4 0.79 0.1
ICC 100k 10.1 15.4 35.4 35.8 10.3 0.9 0.39 12.1 15.8 35.9 33.3 6.4 0.9 0.2

Random 200k 0.9 4.2 9.8 5 2.2 0.51 0.19 1 4.8 11.2 5.9 1.7 0.6 0.11
CLIP 200k 1.3 5.7 12.4 3.4 2.6 0.72 0.21 1.6 6 12.6 3.5 1.8 0.67 0.09
CA 200k 0.5 2.8 5.7 3.7 1.3 0.18 0.20 1.2 3.4 7.2 4.1 1.1 0.24 0.12
T-MARS 200k 1.1 4.6 10.7 6.5 2.4 0.5 0.21 1.7 5.4 12.3 7.8 1.9 0.6 0.12
PACScore 200k 2.9 7 15.5 7 3.7 0.73 0.19 3.8 7.4 15.8 8.8 2.6 0.67 0.12
ICC 200k 10 15.2 34.6 35.5 10.4 0.9 0.39 13.1 15.8 35.2 34.3 6.7 0.9 0.21

Random 500k 0.6 3.4 8 4.5 1.9 0.42 0.2 0.9 4.2 10.1 5.5 1.5 0.55 0.12
CLIP 500k 5.2 9.4 22 15.1 5.3 0.8 0.24 5.2 8.9 21.3 12.9 3 0.8 0.13
CA 500k 0.7 3.1 6 3.6 1.4 0.19 0.2 2.1 4.5 9.4 5.3 1.5 0.29 0.13
T-MARS 500k 0.8 3.7 8.9 5.7 2 0.42 0.21 1.2 4.7 10.8 6.5 1.7 0.65 0.12
PACScore 500k 2.6 6.5 15 8.6 3.7 0.65 0.21 3 6.9 15.4 10.4 2.6 0.65 0.13
ICC 500k 8.3 13.9 31.4 30.9 9.7 0.89 0.37 10 14.2 31.3 28.2 6 0.89 0.2

Table 1: Captioning results for different filtered dataset sizes. We perform evaluation of captioning models over
MS-COCO and NoCaps datasets trained over different filtering schemes of the LAION-400M dataset, with varying
dataset sizes. We compare the performance of ICC to five filtering baselines. Among these, Random refers to
random samples from LAION-400M, CLIP indicates filtering by top CLIPScore, and CA indicates Complexity and
Action filtering. B@4, M, R, C, S, BSc and P denote BLEU-4, METEOR, Rouge-L, CIDEr, SPICE, BERTScore
and Polos metrics respectively. # Samples denotes the amount of samples retained after filtering. Best results are
in bold.

ues, providing further motivation beyond compu-
tational efficiency and simplifying the inference of
our ICC model. We hypothesize that this improve-
ment is due to smoothing of noisy reconstruction
of the VBA and SBA by the distillation process.

Distillation Speed-up. We ablate the speed-up
provided by the distillation phase by running the
SBA, VBA and the distilled ICC on the same hard-
ware settings (an Nvidia A6000 GPU), the same
batch size of 1 and the same caption samples. We
find that the SBA and VBA process 0.45 and 0.2
samples per second respectively, and the distilled
score processes 45 samples per second. Note that
the time it would take to generate scores for our
8M subset of LAION-400M dataset is approxi-
mately 11,000 GPU hours for the VBA and 5,000
GPU hours for the SBA compared to just 50 GPU
hours using the distilled ICC. Additionally, for a
batch size of 1, the distilled model takes less than
700 MB of GPU memory compared to 13GB and

14GB for the VBA and SBA respectively.

Use of Both SBA and VBA Scores. We also ab-
late the use of both SBA and VBA scores for down-
stream captioning model training in Table 5. In the
figure, we show captioning metrics (CIDEr and
SPICE) of a model trained on a distilled version
of each of the scores in isolation, compared to the
combined ICC metric which outperforms both.
ICC Model Component Ablations. In Table 6,
we ablate the effect of various design choices in
the ICC pipeline by evaluating their effects on cap-
tion concreteness prediction (using the benchmark
described in Section 3.2). In particular, we test dif-
ferent LLM sizes (Zhang et al., 2024; Geng and
Liu, 2023) in the SBA pipeline, different caption-
ing model architectures in the VBA pipeline, and
the similarity measure used in each pipeline (edit
distance vs. BERTScore). To identify the effect
of each component, we evaluate SBA and VBA
predictions in isolation (without combining or dis-
tilling them). As is seen in the table, our chosen



COCO Flickr

Filt. Size R@1 R@5 R@10 R@1 R@5 R@10

Rand. 100k 5 15.4 23.3 10.6 31.5 42.6
CLIP 100k 2.1 7.5 12.4 5.7 17.1 26
CA 100k 5.2 15.8 24.1 11.3 32.2 43.8
TMS 100k 6.5 19.5 28.8 14.9 37.1 49.5
PAC 100k 4.8 14 21.2 9.2 24.7 35.5
ICC 100k 14.4 34.5 45.7 32.6 62.7 73.5

Rand. 200k 9.6 25.5 36.2 21.1 48.9 61.8
CLIP 200k 6.9 10 15.8 6.9 20.9 30.9
CA 200k 8.8 24.4 35.1 20.8 48.6 61.2
TMS 200k 8.2 23 32.8 17.8 43.4 56.3
PAC 200k 6.5 17.7 26.3 12.9 31.1 42.9
ICC 200k 15.5 35.8 47.6 33.6 63.2 74.5

Rand. 500k 8 22.2 32.5 17.4 42.1 55.4
CLIP 500k 5.3 16 23.9 11.5 30 42.7
CA 500k 8.2 22.6 32.4 17 43.3 56.7
TMS 500k 10 26.3 37.2 20.3 46.8 60.5
PAC 500k 8.8 23.5 33.9 17.8 40.4 53
ICC 500k 14.6 34.9 47 30.6 60.9 72.9

Table 2: Representation learning results over differ-
ent filtered dataset sizes. We perform text-to-image
retrieval evaluation over MS-COCO and Flickr30K for
different filtering schemes of LAION-400M with vary-
ing dataset sizes. We compare our performance (ICC)
to various filtering baselines: Rand. indicates select-
ing random samples from LAION-400M, CLIP indi-
cates filtering by top CLIPScore, CA indicates Com-
plexity and Action filtering, TMS indicates filtering
with T-MARS and PAC indicates filtering with PAC-
Score. Best results are in bold.

LLM and captioning model perform comparably
to the alternative models tested, showcasing the ro-
bustness of the VBA and SBA across model sizes.
Moreover, while the simple edit distance similarity
measure performs acceptably for the SBA pipeline,
the BERTScore similarity measure produces sig-
nificantly better correlations in the VBA pipeline,
matching the intuition that the VBA is inherently
lossy with respect to the precise form of texts and
must rely on a more semantic measure to properly
detect abstract sentences.

5 Related Work

Evaluating Text Concreteness. Word con-
creteness is a topic of interest in cognitive sci-
ence (Paivio et al., 1968; Richardson, 1975;
Schwanenflugel, 2013; Khanna and Cortese,

Word Conc. Caption Conc.

Method ρ ρs τ ρ ρs τ

CLIP-SP 0.6 0.62 0.44 0.34 0.33 0.25
aveCLIP 0.55 0.56 0.39 0.29 0.28 0.22
GPT-4o 0.78 0.79 0.64 0.57 0.57 0.49
ICC 0.75 0.75 0.55 0.73 0.75 0.6

Table 3: Concreteness evaluation on single-word and
caption-level texts. Correlation (in absolute value) is
measured using Pearson ρ, Spearman ρs, and Kendall
τ coefficients. Best result are in bold, second best are
underlined.

ρ ρs τ

Before Distillation 0.65 0.6 0.46
After Distillation 0.72 0.75 0.6

Table 4: Distillation Effect on Caption Concreteness
Correlation. We show correlations to ground-truth an-
notated caption concreteness scores before and after
distillation. The “After Distillation" row corresponds
to our final ICC score.

2021), and a number of works have studied auto-
matic prediction of word concreteness using ma-
chine learning (Hill et al., 2014; Hill and Korho-
nen, 2014; Hessel et al., 2018; Rabinovich et al.,
2018; Charbonnier and Wartena, 2019; Alper et al.,
2023). However, little attention has been paid to
measuring concreteness at the caption or string
level. Most similar to us is Wu and Smith (2023),
who generate multiple images for each caption and
average the CLIP similarity scores over all the im-
ages to produce a caption-level concreteness score.
Other text evaluation metrics compare to reference
texts (Gehrmann et al., 2023) or a reference im-
age (Hessel et al., 2021), while we are interested
in the inherent quality of text in isolation (namely,
its visual concreteness).

Multimodal Dataset Curation. Due to the highly
noisy nature of Internet multimodal data, prior
works have filtered using approaches such as rule-
based text parsing (Radenovic et al., 2023), using
CLIP similarity to detect misaligned text-image
pairs (Schuhmann et al., 2022), de-duplicating se-
mantically similar content (Abbas et al., 2023),
and removing samples with text that overlap with
the image (Maini et al., 2023). A number of
prior works have also proposed replacing or aug-
menting multimodal datasets with synthetic sam-



COCO NoCaps

Method CIDEr SPICE CIDEr SPICE

SBA 17.8 5.9 15.1 3.3
VBA 29.8 9.4 27.8 5.8
ICC 30.9 9.7 28.2 6

Table 5: Score Ablations We ablate the importance
of using scores obtained from both the SBA and VBA
pipelines over 200k samples dataset that was filtered
using the different scores.

ples (Li et al., 2022, 2023; Fan et al., 2023; Lai
et al., 2023; Nguyen et al., 2023). By contrast,
we do not require modifying the given dataset and
identify semantically infelicitous captions allowed
by prior methods. Our work also contrasts with
dataset distillation, which has been applied to mul-
timodal dataset curation (Wu et al., 2023); while
dataset distillation methods select samples to ex-
plicitly optimize a chosen downstream objective,
we focus on the simpler and more general task of
identifying samples of inherently poor quality.

6 Conclusion

We present a new metric for measuring the visual
concreteness of image captions without an image
reference. By leveraging strong foundation mod-
els, we quantify visual-semantic information loss
in an unsupervised manner and find that this highly
correlates with human concreteness judgments.
Our results demonstrate that ICC is effective at se-
lecting a core of high-quality image-caption sam-
ples from web-scale multimodal datasets for train-
ing models in the resource-constrained setting. We
foresee the use of ICC in additional tasks requiring
the curation of web-scale multimodal data, where
high-quality, visually-concrete text is needed.

Limitations

While our method manages to detect visually con-
crete captions well, it lacks sensitivity to grammat-
ical structure, which might cause it to label oddly
phrased captions as concrete. For instance, con-
sider the caption: “a computer near a tree with a
boy next to a table with a keyboard”. This cap-
tion is highly concrete and gets a high ICC score
of 1.0. However, removing all object relations
from the caption produces the following: “com-
puter tree boy table keyboard” which results in a
relatively minor decrease of the ICC score to 0.89.
Such low-quality captions might have a negative

Caption Concreteness

Pipe Model Part Sim. ρ ρs τ

SBA TinyLLaMa-1.1B ED 0.59 0.58 0.45
SBA OpenLLaMa-3B ED 0.57 0.56 0.43

* SBA LLaMa-2-7B ED 0.53 0.51 0.48
SBA TinyLLaMa-1.1B BSc 0.57 0.56 0.43
SBA OpenLLaMa-3B BSc 0.56 0.55 0.42
SBA LLaMa-2-7B BSc 0.57 0.56 0.43

VBA BLIP-Base ED 0.43 0.4 0.31
VBA BLIP-Large ED 0.43 0.36 0.27
VBA BLIP-2 ED 0.44 0.41 0.31
VBA BLIP-Base BSc 0.6 0.6 0.46
VBA BLIP-Large BSc 0.58 0.56 0.43

* VBA BLIP-2 BSc 0.6 0.58 0.45

Table 6: Ablations over VBA and SBA Design
Choices. We ablate the effect of the LLM used in
the SBA pipeline and the captioning model used in the
VBA pipeline, as well as the text similarity measure, on
the correlation to the ground-truth concreteness anno-
tations. Note that here we measure correlation to each
model of the piplines (VBA and SBA) used in isolation.
BSc and ED refer to BERTScore and edit distance re-
spectively. We report the Pearson ρ, Spearman ρs, and
Kendall τ correlation coefficients. Our default settings
are indicated with a prepended *.

impact on tasks such as image captioning where
the model must learn to output grammatically cor-
rect English sentences which should ideally de-
scribe relevant fine-grained relations between en-
tities. We hypothesize that this behavior stems
from the dataset used to train the distillation model
(CC3M) which is not likely to include such oddly
phrased captions, and so these non-grammatical
structures are not learned. We hypothesize that
training over a dataset with higher caption diver-
sity will likely alleviate this issue.

In addition, due to limited computational re-
sources, our experiments were conducted on a rel-
atively small scale of 8 million sample initial train-
ing dataset based on LAION-400M. We expect
that increasing the scale and the filtered dataset
proportionally will result in a performance im-
provement in the downstream model performance.
However, we leave verifying this as well as test-
ing the effect of ICC filtering on other downstream
tasks such as VQA and caption ranking to future
work.

Finally, while our method detects and filters
an important category of noise in multimodal



datasets, we note that abstract captions such as
those in Figure 2 may contain important infor-
mation which our method discards. Future work
might instead extract the relevant visual informa-
tion from such captions, to avoid losing the infor-
mation signal in such items. We also note that such
captions often contain external or subjective infor-
mation which could be of interest to tasks such as
news image captioning or multimodal sentiment
analysis, where external context is of interest. To
identify such cases, further work might enhance
the interpretability of our method to explore why a
caption is or is not concrete.

Ethics Statement

Models trained on multimodal Internet data may
inherit biases from their training data. Our method
is not designed to filter potentially harmful im-
age descriptions; moreover, such biases are also
present in the models used as part of our pipeline
(CLIP, generative models) and thus our model may
possibly inherit or amplify these issues for down-
stream tasks. We anticipate further research into
such biases and guidelines needed before putting
these models into deployment.
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Appendix A Implementations Details

A.1 Standardizing By Caption Length
We aim to have reconstruction scores that are only
dependent on the concreteness of captions and not
on the length of the captions for both the SBA and
VBA. In Figure 5, we show the distribution of the
edit-distance based reconstruction similarities of
the SBA before and after standardization per cap-
tion length. We can see in Figure 5a that there is
a strong dependency on caption length, which we
would like to avoid.

More specifically, we force the reconstruction
similarity distribution to be distributed according
to LN (µ = 0.5, σ = 1), where LN denotes a
Logit-Normal distribution. The normalization is
performed by standardizing the logit of the similar-
ities (defined by ln( 1

1−p)) for each caption length,
and then taking the inverse logit. We can see
in Figure 5b that short captions are reconstructed
more easily compared to longer ones, and that nor-
malization by caption length successfully disen-
tangles the reconstruction scores from the caption
length dependency.

A.2 ICC Distillation
We distill the knowledge obtained by the two
pipelines described in the paper in a two-stage
manner. Firstly, we distill the VBA and SBA
scores into two distinct DistilRoBERTa (Liumm
et al., 2019) models. We then collect a small
subset of 244 captions, sampled to have approx-
imately uniform joint distribution of scores, and
annotate the concreteness scores of these captions.
This is showcased in Figure 6. We regress over
these samples to get the optimal weights.

A.3 Caption Concreteness Benchmark
Distribution

Our aim is to have a small, yet diverse set of sam-
ples that represent the wide diversity of possible
captions. Since Laion-400M is very noisy and
only a small portion of it includes highly concrete
captions, we curate our captions to achieve a bal-
anced distribution of concreteness scores, as illus-
trated in Figure 7. As seen there, the concreteness
of the benchmark’s captions is evenly distributed
between abstract and concrete concepts.

A.4 Zero-Shot CLIP Concreteness Score
We adapt the Stroop Probing method (Alper et al.,
2023) for estimating text concreteness. While

Alper et al. (2023) test this on single words, we
adapt this method to captions by replacing the
empty slot in prompts with a caption rather than a
single word. We use their prompts, omitting those
which do not match the context of an entire cap-
tion being inserted in the masked slot (i.e., omit-
ting the prompts “Alice giving the [*] to Bob” and
“Bob giving the [*] to Alice”).

A.5 GPT-4o Prompts

The following prompts were used to extract con-
creteness scores for image captions4 from GPT-
4o:
System: “You are an expert visual
reasoner, capable of understanding the
visual concretess of image captions. A
visually concrete caption is a caption
that is highly visual, and can be vividly
imagined.”
User: “Provide a numerical score on a
scale of 1-5, when 1 is non-visual and 10
is highly visual caption for the following
caption : <caption>. Only provide the
numerical score and nothing else.”

Note that we experimented with three differ-
ent ranges of [1-N] of concreteness scores in our
prompts: N=3, N=5 and N=10. We found that N=5
yielded the best results.

A.6 aveCLIP Word Concreteness

Since aveCLIP requires generating many images
per word or caption, we found that running ave-
CLIP over the entire word concreteness dataset is
not feasible due to runtime constraints. Therefore,
we evaluate its performance on a random subset of
150 words/captions.

A.7 Training Hyperparameters and
Additional Information

SBA. We train the linear layer of the SBA with a
batch-size of 128, learning rate of 2e-3 with cosine
scheduler and a warm-up ratio of 0.03, and train
for a two epoch over a single Nvidia-A6000 GPU.
All other hyperparameters are set to the defaults of
the HuggingFace Trainer API.

VBA Text-To-Image. For the image generation of
the diffusion model in the VBA, we use guidance
scale of 9 and 20 inference steps.

4To get the concreteness scores of words, we used the
same prompts with “word” instead of “caption” in the appro-
priate places.



(a) Before Standardization (b) After Standardization

Figure 5: Standardizing by caption length. We show the reconstruction similarity scores of SBA for each caption
length before standardization (in 5a) and after standardization (in 5b).
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Figure 6: Finding the Optimal Weights. We measure
the optimal combination of the two scores with respect
to ground-truth concreteness annotations.

A.8 Model Checkpoints Used
We detail here all the checkpoints that were used in
our experiments. All model checkpoints are taken
from the Hugging Face Model Hub5. For the SBA,
we used:

• openai/clip-vit-large-patch14 (only
the text encoder)

• meta-llama/Llama-2-7b

For the VBA, we used:

• stabilityai/stable-diffusion-2
• Salesforce/blip2-opt-2.7b

For the distilled model, we used:

• distilroberta-base
5https://www.huggingface.co/models

Figure 7: Distribution of annotated concreteness scores
in our manually labeled test set of 500 captions. All
samples are from LAION-400M. Annotations range
from highly abstract (0) to highly concrete (3).

For training a captioning model, we used:

• microsoft/swin-base-patch4
-window7-224-in22k

• gpt2

For training a dual-encoder model, we used:

• bert-base-uncased
• google/vit-base-patch16-224

A.9 Finding the Score Combination
Parameters

To compute the combination parameters of the
SBA and VBA scores, we label 244 captions, sam-
pled uniformly over VBA and SBA scores, with
concreteness scores in the range 0–3. We use lo-
gistic regression to find the parameters a, b, c of
σ(a · V BA+ b · SBA+ c), where σ(x) = 1

1+e−x

https://www.huggingface.co/models


is the sigmoid function, such that the output will
approach 1 for concrete captions and 0 for ab-
stract ones. We label concrete captions as cap-
tions with concreteness above the median score
in the labeled dataset and abstract captions as cap-
tions with a score below this median. We visual-
ize the annotated samples and the regression line
a · V BA+ b · SBA+ c = 0 in Figure 6. The pa-
rameters found and used in our ICC are a = 13.2,
b = 3.6 and c = −9.4. As seen in the figure, both
scores contribute to the optimal predicted concrete-
ness score, validating the importance of using both
SBA and VBA components together in our full
pipeline.

Appendix B Additional Experiments and
Ablations

B.1 Additional Comparison to
GPT-3.5-Turbo

Figure 7 illustrates the correlation of concreteness
predictions on caption-level texts for GPT-3.5-
Turbo. The results clearly indicate that GPT-4o
surpasses GPT-3.5, establishing it as the strongest
baseline. However, both are ultimately outper-
formed by ICC.

B.2 Qualitative Examples Showcasing the
Importance of Both Pipelines

We visually show examples of each of the scores’
weaknesses and the way they compliment each
other. In Figure 8, we show examples of con-
crete captions, the reconstructed captions by VBA
and SBA, and the different scores of each of them.
The first four rows exemplify why VBA may fail
to reconstruct some concrete captions. For in-
stance, the caption “a nurse mopping a surgeon’s
brow during an operation in an operation pub”
was reconstructed to “two people in protective
gear” which bears relatively low semantic simi-
larity to the original caption. These cases mainly
stem from the inherent difficulty of reconstructing
(through a captioning model) from an image the
exact caption from which the image was generated,
as there may be many possible such captions. In
this case, the use of SBA helps determining that
the caption is concrete.

In a complementary manner, we show in Figure
9 examples of abstract captions. In this figure, the
first four rows demonstrate that using SBA alone is
also not enough, as it is sometimes able to recon-
struct abstract captions due to the higher seman-

tic information that is contained in the CLIP em-
beddings. In this scenario, VBA compensates for
these failures, as it is very unlikely to reconstruct
abstract text.

These qualitative examples further illustrate the
benefit of using both VBA and SBA. Indeed, in
Figures 8–9, it can be observed that ICC reflects
the advantages of both pipelines by generating low
scores for abstract captions, and high scores for
concrete ones in a consistent manner.

Caption Conc.

Method ρ ρs τ

GPT-3.5 0.44 0.48 0.4
GPT-4o 0.57 0.57 0.49
ICC 0.73 0.75 0.6

Table 7: Additional concreteness evaluation on
caption-level texts. Correlation is measured using
Pearson ρ, Spearman ρs, and Kendall τ coefficients.



Input caption SBA reconstructed
caption

VBA re-
constructed
caption

VBA bot-
tleneck
image

SBA VBA ICC

a nurse mopping a sur-
geon’s brow during an
operation in an opera-
tion pub

a nurse wiping the
brow of a surgeon
during an operation
in an operating room

two people in
protective gear

0.77 0.25 0.72

bougainvillea climb-
ing up the wall of a
villa

bougainvillea climb-
ing on a wall of a
villa

a house cov-
ered in pink
flowers

0.72 0.26 0.81

table top shot of many
vegetables and mexi-
can bugs on a table

close up shot of veg-
etables and bugs on a
table

vegetables
arranged in
the shape of a
human head

0.70 0.25 0.76

silhouette of a man
with a gun in poses
royalty

silhouette of a man
holding a gun in
poses royalty

a group of peo-
ple silhouettes
on a white
background

0.82 0.26 0.93

small flock of sheep in
winter snow on a hill-
top

small flock of sheep
in snow on a hill

a herd of sheep
in the snow

0.72 0.95 1.0

small blue and white
airplane parked on the
ramp with a control
tower in the distance

small blue and white
airplane parked on
the tarmac next to a
control tower

a blue and
white airplane
parked on the
tarmac

0.96 0.95 1.0

a young girl runs
through a field of
cabbages

a young girl runs
through a field of
cabbages

a girl walking
through a field
of cabbage

0.96 0.95 1.0

a red post box and
a telephone box stand
together in a village

a red telephone box
and a post box stand
together in a village

a red post box
next to a stone
wall

0.84 0.89 0.92

Figure 8: Qualitative Examples for Highly Concrete Captions. We demonstrate reconstructions of highly con-
crete captions and the final distilled ICC scores. We mark by red low reconstruction scores which correspond to
unsuccesfull detection of the concrete captions. As illustrated above, VBA yields generally less consistent scores
for concrete captions (see the text for further discussion). Nonetheless, our final distilled scores correctly identify
these captions as concrete ones, obtaining high ICC scores over these captions.



Input caption SBA reconstructed cap-
tion

VBA recon-
structed
caption

VBA bot-
tleneck
image

SBA VBA ICC

keep an eye on the ball
when it comes to in-
vestments

keep an eye on the ball
when it comes to invest-
ments

a soccer ball
on a green
field

0.91 0.19 0.1

what ’s the best thing
about having a best
friend of the opposite
gender ?

the best thing about having
a friend of the opposite gen-
der

two young
women sitting
on a bench

0.89 0.16 0.1

film character : would
you like to bet on these
shares this christmas ?

which film character would
you like to see in your
shares this christmas?

santa claus,
santa claus
and sant

0.79 0.1 0

this is located in my
home town !

this is located in my home-
town!

a sign in front
of a statue

0.75 0.28 0

chaotic systems are
sometimes described
using fractal patterns

fractals are patterns that
can be found in many
forms, such as chaotic sys-
tems and natural structures.

a black and
white tunnel

0.22 0.19 0

on an average , the
sloth travels feet a day

a sloth spends most of the
day on its feet

a sloth hang-
ing from a
branch

0.17 0.27 0

get tips for biologi-
cal genus , more com-
monly known as air
plants , in your home

learn how to care for air
plants, one of

a bunch of air
plants on a
brown surface

0.32 0.25 0

versatile and highly ca-
pable , there ’s more to
this tiny camera than
its giant zoom

this little camera packs a
big punch with its zoom
lens and 2

a camera on a
wooden table

0.25 0.24 0

Figure 9: Qualitative Examples for Highly Abstract Captions. We demonstrate reconstructions of highly ab-
stract captions and the final distilled ICC scores. We mark by red captions which were reconstructed well (note
that in the case of abstract captions, high scores correspond to unsuccessful detections of the abstract captions). As
illustrated above, SBA yields generally less consistent scores for abstract captions (see the text for further discus-
sion). Nonetheless, our final distilled scores correctly identify these captions as abstract ones, obtaining low ICC
scores over these captions.


